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BAYESIAN COMPUTATIONS IN SURVIVAL MODELS VIA THE GIBBS SAMPLER

LYNN KUO, ADRIAN F. M. SMITH,
Department of Statistics, Department of Mathematics,
University of Connecticut, Imperial College London,
U. S. A. United Kingdom.

ABSTRACT. Survival models used in biomedical and reliability contexts
typically involve data censoring, and may also involve constraints In
the form of ordered parameters. In addition, inferential interest
often focuses on non-linear functions of natural model parameters.
From a Bayesian statistical analysis perspective, these features
combine to create difficult computational problems by seeming to
require (multi-dimensional) numerical integrals over awkwardly defined
regions. This paper illustrates how these apparent difficulties can be
overcome, in both parametric' and non-parametric settings, by the Gibbs
sampler approach to Bayesian computation.

1. Introduction

For the Bayesian statistical analysis of other than simple stylized
models, the key tool for calculation is (multi-dimensional) numerical
integration; see, for example, Smith et a (1987) for a review of
available techniques. However, it is widely recognized that
considerable numerical sophistication is typically required n applying
these techniques, and that this has thus far hampered the development
of routinely available, user-friendly, Bayesian computational methods.

This is particularly true in the case of survival models used in
biomedical and reliability contexts. Here, features such as data
censoring, ordered parameters, assumed convexity or coneRvity of dis-
tributions, all conspire to produce complicatedly constrained regions
over which numerical integrations are required. Not surprisingly, the
literature therefore contains very few instances of fully Bayesian
analyses in survival contexts (I. e., presenting full and accurate
posterior summaries, rather than, say modal point estimates or second
derivative uncertainty measures).

Recently, however, Celfand et a) (1991) have shown that the Gibbs
sampler approach to Bayesian computation (see, for example, Gelfand and
Smith, 1990, and Gelfand et al, 1990) effectively side-steps the



seeming problems of awkwardly defined Integration regions in truncated
data and constrained parameter problems, and provides an easily
implemented computational procedure.

Our purpose in this paper Is to illustrate the simplicity and scope of
the Gibbs sampler for the routine Bayesian analysis of survival data,
in both parametric and non-parametric settings. In Section 2, we
briefly review the Gibbs sampler and its general structure for
constrained parameter and censored data problems. In Section 3, we
provide a range of illustrations of how the methodology proceeds for a
variety of parametric models used in various survival modelling
contexts. In Section 4, we give a non-parametric illustration of the
methodology.

2. The Gibbs Sampler, Constraints and Censoring

2.1 THE GIBBS SAMPLER

In what follows, densities will be denoted generically by square
brackets, so that joint, conditional and marginal forms for
random variables U, V appear, respectively, as [U, V], [U V] and [VI.
arginalization by integration is denoted by [U] = f[UIV].[V]. Given a

collection of random variableg with joint density .1'p ..U2' Ik]' we

shall refer to [UsJUr , r~s], s = 1, 2..... k, as the full conditional

dens it les.

The Gibbs sampler is a simply described Iterative stochastic simulation
scheme, whereby samples drawn from the full conditional densities are
used to provide summaries of aspects of the joint density. Given an

arbitrary set of starting values, U,.... U a random variate U1  Is
kv 1

-~1 1drawn from [U1 u2_,... ,uk]. then a variate U Is drawn from2'' so on 1] U2 I.. U
ci I], and so on until Uk is drawn from [ 2ul i  _z]. This3 kk fo UIi,** (1
completes one iteration of the sampler and results n a generated

vector W, U ) Repeating this process, after I iterations weveto ..1 .... . ht.une

arrive at a generated vector (U 1 ... Uk). It can be shown that, under

mild regularity conditions (see, for example, Gema.a and Geman, 1984),
as i-w this random vector tends n distribution to a random vector

having the joint distribution [U .... Uk].

One possible procedure for obtaining summaries of aspects of

[U 1 ,... PUkI of interest Is therefore the following. Run N independent

parallel replications of the above' sampling procedure, so that, for I



Judged to be sufficiently large, the resulting generated vectors

... 'U J - 1,2...., , can be regarded as an lid sample of

size M from [UI ... ,Uk]. Standard moment, quantile or density

estimation techniques can then be employed to estimate summary features
of interest.

In the Bayesian inference context, [U I .... U k  is the joint posterior

density of unknown model parameters U 1 ,...,U k .  Inivariate marginal

inference summaries for Us , say, are simply obtained from

(U I ... ,U 1 ). Generally, if marginal inference summaries are required

for a specified function of (U, .... U k), an lid sample of size H from

the corresponding marginal density Is immediately available on substi-

tuting the generated vectors (U U ), J = 1,2,...,M, Into the

functional form. Exploration of bivariate (or higher dimensional)
marginal summaries proceeds in an obvious manner. For further detail,
and comments on the pragmatics of choices of I and H, see Gelfand and
Smith (1990, 1991), Gelfand et al (1990, 1991).

The Gibbs sampler thus provides a simulation-based alternative to
direct numerical integration methods, and one which depends only on our
capacity to generate random variates (reasonably efficiently) from the
full conditional densities, [UIUr, ros]. We shall now look at this

latter issue in the context of constrained parameter and censored data
problems. Our discussion here will be kept to the minimum necessary to
give the reader an appreciation of how the Gibbs sampler achieves
crucial simplification. For a much more complete discussion, see
Gelfand et al, (1991).

2.2 MODELS WITH CONSTRAINED PARAMETERS

Suppose a parametric model for data Y involves a k-dimensional

parameter vector e, constrained to lie in a subset Sk of Rk .  For

simplicity of exposition, we shall assume here that Sk does not depend
on Y (as would be the case, for example, if some components of 0 were
truncation parameters: see Gelfand et al, 1991). Suppose further that
[Y1]9, [e] denote the (unconstrained) forms of likelihood and prior, so
that the (constrained) Joint posterior for e - (0 . is given by 0

[ e l [ y]e ] [ e ] , , 0. _ .... .

ff _ Av, 11; 'it Codes
. I ... cI /or

Dist



Proceeding by direct numerical integration, we see that there is an
immediate problem in calculating the normalizing constant and subse-
quent problems in performing (k-1)-dimensional integrals (over subsets

of Sk) to obtain marginal density forms.

However, consider now the full conditional forms required for the Gibbs

sampler. If Sk(e , . i) denotes the cross-section of S k  corresponding

to the constraints on e1 imposed by Sk for specified values of o0, Jri.

we have

[eily, Yj, Jl] a [Ylel.[el ,ei'l~ J J~i

Moreover, the constraints region for e i will typically be an interval,

or a union of intervals.

It follows that the typical random varlate generation task required for
the Gibbs sampler in this case, will simply be that of generating from
specified univariate density shapes truncated to intervals. This is a
relatively straightforward task: in any case, strikingly easier than
high-dimensional numerical integration over complicated constraint
volumes.

2.3 CENSORED DATA PROBLEMS

Suppose a parametric model for data Y = (Y1 ... Y n involves a

k-dimensional parameter vector 8, with likelihood defined by

[YjeJ = iU [Y 1 e]
I

However, suppose that for J a m > 1 there exist V j, V i  such that,

instead of observing Y exactly, we simply observe that Y e (V V )

so that the likelihood is actually given by

S 1 ne] V iYjel

1=1 J=1

(We are here assuming a simple, fully specified censoring process for
convenience of exposition. For a more general discussion, see Gelfand
et &1, 1991).

In this case, a moment's reflection reveals that the full conditional
forms implied by the above likelihood combined with a prior [0) are
not, in general, easy forms to sample from. In particular, the



integral terms may have no closed-form analytic expressions, so that
standard envelope rejection or ratio-of-uniforms sampling techniques
are not readily applicable.

However, suppose we consider Y' = (1' ... Yn) as additional unknowns,

so that the unknown model parameters are (8, Y'), with the data given
by (Y*, V, W), where YO = (Y1 .... IY 1 ), V = (V... V) and W =

(Wm ..... n) Consider now the full conditionals required for the Gibbs

sampler:

[e i IY ', v. W, J , Joi, Y '], i , It ..... k ,

[ Yr IY", V, W, e, Ys" , sr, s t m) . r =- m,....n

Careful examination of the conditioning variables reveals that the full
conditionals for e 6..... k reduce to

[eilY, ej, Jsi] , i = 1.... ,k

the forms that would have obtained in the uncensored case! Typically,
these forms present no difficulty for random variate generation.

For the full conditionals for Y. ... ,Yn' examination of the forms

reveals that these reduce to

WJr
[Yri] /r [Yr e ]  r =m,....n

V
r

namely, the sampling distributions for the Y restricted to the rangesr

(V J ). Again, these typically present no difficulty for random

variate generation.

The trick of treating censored observations as unknowns in combination
with the Gibbs sampler leads to simple Bayesian calculation strategies
in otherwise ntractable problems (see, also, Tanner and Wong, 1987,
for a related manifestation of the idea). In the next section, we
illustrate this concretely by detailing the forms of the Gibbs sampler
arising in a range of parametric models used in various kinds of
survival studies.



3. Illustrations For Parametric Suvival Models

3.1 ORDERED BINOMIAL PARAMETERS

Consider conditionally independent observations Y i- Binomial (n ,

e0), I - 1,2,...,k , where it is known that 01 S 02 s...z ek and we

seek to make inferences about the 01 (or functions, thereof, such as

ei+l-01 or (0 i+-6i) / 0 ). Problems of this kind arise, for example,

in reliability development testing (Smith, 1977; Fard and Dietrich,
1987), where stages 1,.... k correspond to successive improvements In
reliability.

If the joint prior density is taken to be proportional to

kI

1=1

over the simplex, S k = ((e .... ek  0 s el S e2  e k s 1), by

conjugacy the joint posterior 1eY] has the same form, with support Sk,
but with a,, 131 replaced by ai + Yip 1 + ni - Yi, respectively.

Implementation of the Gibbs sampler is now seen to be very simple. The
full conditionals are given by

[el1Y, e., J11 = Beta (a,+ Y, 131 + n - Y1) , I = 1,... ,k

restricted to the interval 8 1 6 S sa el (0 = 0, = 1), and

random varlate generation is straightforward.

3.2 CENSORED REGRESSION DATA

Schmee and Hahn (1979) modelled log-failure times of motorettes tested
at four different temperatures by a straight-line regression of
log-failure versus transformed temperature. Censoring occurred
whenever a motorette had not failed at the end of the test period. The
uncensored case likelihood [Y1] is assumed to derive from Y = a +

+ Cij, where E! ~ N(O, '), I = 1 ... k, J = 1,... ,n1 , but the
actual data, Z, are given by

zI
zIi - >r

Vl YJ >Wv



where I. is the total test time at temperature corresponding to XI.

To implement the Gibbs sampler, as indicated In Section 2.3, we include
the unobserved Yij (i. e., those where YJ > WI,) as further unknowns in
the model, in addition to the basic parameters of interest, &,I and 0.

Given conjugate normal prior forms for a,13 and an inverse-gamma prior
2for a , it is easily verified that the full conditional forms for a,12

and or are straightforwardly identified conjugate forms (normal, normal
and inverse-gamma, respectively) obtained as if all the Y J were

precisely observed. The full conditionals for the unobserved Y j are

simply N(m + Xi, 2 ), restricted to the range YJ > V. Again, random
variate generation from all these full conditionals is unproblematic.

3.3 TRUNCATED BIVARIATE NORMAL DATA

Consider a bivariate normal process (Xi Y ), 1 1... n, where some of

the Y are not observed. One context in which such data arises is in

paired survival time studies (using observed logarithms of survival
times), where observation (Yi) of the second of the paired patients is

terminated when the first of the pair dies, so that Y is observed only

if Y. : X.
I I

More precisely, we assume lid pairs (Xi, Y ) such that for i = 1,...,n,

We observe the pairs (Xi, ZI) with Z1 - Y, if Y z Xi; otherwise we

observe (X,, *), where Z, = indicates that Y > X Suppose that the

prior for ( 1 , 2 ) is taken to be bivariate normal with mean (p 1, A2 )

and covariance matrix V, and that the prior for the covariance matrix,

E, say is taken to be an inverse-Wishart, so that [I ] = LI (pR)p), with all the hyperparameters jI, VL2' V, p and R known.

Interest focuses on marginal inferences for e,, 92 and X, but,

following Section 2.3, unobserved values of Y are also treated as

unknowns in specifying the Gibbs sampler. Defining T, = (Xi, YI), T -



(T . Tn), T = n-l(T1 +.. + T ), e = (e1 , 02 ) and p = (p1' IA2) ' it Is

easily verified that

[elT, Z, ] - N{Vn 1 E + V)-1 T + n-l E(1n-I + V)/p, (nX 1 + V-) -1 ,

[X IT, Z, 0] = V{C((T - e)(T - e' + pR) - 1 n + p}
CT

and

YjIX.Z -0,1 i0 ,W-2 ( - e 2 -

truncated to (X , w) If Zi = , with Y, degenerate at Z, otherwise.

The required random variate generation is routine.

3.4 WEIBULL PROPORTIONAL HAZARDS WITH CENSORING

Consider a survival time model in which the hazard function A(t; Z),
for an individual with covari te values Z at time t, is given by

AVt; X) = ptP - 1 exp(M_8)

where 13 = (g o . I,1 .... 3p )' Is a vector of unknown regression parameters

and p > 0 is the unknown Weibull shape parameter.

If t I f...t n are explicitly observed survival times and tn+1 .... t m are

censored (T > t) lifetimes, with Z denoting covariate values for the

jth case, the likelihood is given by

n P -1 Zn+m 
ZH Pt eH x

j=1 J-1

Clearly, whatever the prior specification, the resulting
(p + 2)-dimensional posterior is awkward to handle using standard
numerical integration procedures.

However, it is easily verified that the second partial derivatives of
the log-likelihood with respect to each of the p + 2 unknown parameters
are all non-positive (see Dellaportas and Smith, 1991). If the prior
density is chosen to be log-concave, it follows that all the posterior
full conditionals are log-concave. The import of this observation is
that highly efficient methods exist for random variate generation from
log-concave densities (see, in particular, Gliks and Wild, 1991), so



that routine, straightforward Bayesian calculation for widely used
cases of proportional hazards models is possible (see Dellaportas and
Smith, 1991, for wider exploitation of log-concavity).

4. A Nonparametric Illustration

4.1 INTRODUCTION

Nonparametric Bayesian inference for the survival function with right
censored data has been studied by Susarla and Van Ryzn (1.76), and
Ferguson and Phadia (1979). However, we often encounter the situation
where some observations are censored from the left and some
observations are censored from the right (see Turnbull, 1974, for
references to papers addressing doubly censored data sets from a
frequentist perspective).

In this section, we study a nonparametric Bayesian approach to such
problems, which allows us to incorporate prior beliefs and frees us
from making a restrictive (parametric) model assumption for the
survival function. Specifically, we assume that the distribution
function F of survival times has a prior given by )erguson's (1973)
Dirichlet process, D(c). The measure a can be written as NF0 , where F0

is the prior mean of F and F0(1 -F 0  (N + 1) is the prior variance of

F. The larger N, the more str,)ngly the prior specifies that F concen-

trates around FO .

In the doubly censored data case, it is very difficult to obtain an
explicit expression for non-parametric Bayesian estimators even in the
form of the posterior mean. We shall show, however, that the Gibbs
sampler approach, which augments the data by using latent variables
that decompose the number of the censored observation into the possible
numbers of observations falling into each interval, provides a
straightforwardly computed numerical solution. As illustrated in
Section 2.3, this augmentation facilitates the specification of
appropriate full conditional densities, particularly here for the
survival functions given the latent variables. The iterated sampling
scheme then allows us to approximate the posterior distribution of the
survival function.

4.2 THE MODEL

We shall illustrate the approach using a model similar to that studied
by Turnbull (1974), who proposed a self-consistent algorithm for
computing the generalized maximum likelihood estimators. Here, we add
the Dirichlet process prior to the model.

Let TI, T2 ,..... Tn denote the true survival times of n individuals that



could be observed precisely If no censoring were present. The T are

Independent and identically distributed with distribution F; that is,
F(t) = P(T S t) for t x 0. We consider the case that not all T are

observed precisely. For each i, we assume that there are "windows" of
observations V and Wi (V1 s V1) that are either fixed constants or

random variables independent of the {T }. We observe

X = max [ min(T r . W). V I]

Moreover, for each item, we also know whether it Is left-censored with

X 1 = V, or right-censored with X = W or a precisely observed time

with X. = T..
I I

We assume that items (or patients) are examined at discrete times (for
example, monthly) and that there is a natural discrete time scale 0 <
t < t2 < ..., t , with observed deaths classified into one of the m

intervals (0, t 1 ], (t i , t2 ] ..., (t81-_, t 7. Let 6i denote the number of

precise observations (=) in the period (tl 1 , t 1 ], 1 i denote the number

of left-censored () entries at age t, and A. denote the number of

right-censored (>) entries at t It is assumed that the left-censored

entries pi all occur at the end of age period (tr  t 1+]. The data can

then be summarized by the following tabulation:

Type of obs. \ age (0, tI] (t 1 , t2 ] ... (ta- , tM ]

(=) 61 a2 ... m
{'€) 1 I2" "'m

W> Al A2  .. AgW A ) I  2  .. m

Let P - P(t ) = 1 - F(t j) denote the survival function evaluated at

t Y so that the likelihood function is proportional to

a T ; i Ai
(PJ J- J I

J=1

Let ej - P J-1 - P for J 1.... m and let9 m+1 = PM The prior

process specifies that the distribution of the O's is the Dirichlet
distribution



W+1x(e) = C e~ -1

J= 1

where

j N(Fo(t ) - Fo(t J))

for J = 1.... + 1, with Fo(t,+ ) = 1, and

C r(N)
U 

1

_:71 r(Ca~

The posterior distribution of e = (eI$ 62 .... M, e + 1  is known to be

a mixture of Dirichlet distributions (see Antoniak, 1974). In the next
section, we show how the Gibbs sampler side-steps the need for direct
computation of this mixture.

4.3 APPROXIMATION VIA THE GIBBS SAMPLER

To employ the Gibbs sampler, we use the idea of Section 2.3 and
introduce latent variables that decompose the numbers of censored
entries into the numbers of observations belonging to individual
intervals. Let Zii, Z J Z JJ denote the random variables that count

the number of observations in p that might fall in the intervals (0,

tl], (tt ti], respectively, so that pj J ZIJ.

Further, let Z +lJ .... , WZ+l denote the number of observations in A

that might fall in the intervals (ti t j1....,(ti&- 1 , tI I (tms 0],

respectively, so that A = f +1 ZIf
1-J+1

Our objective is to summarize, via samples generated form the Gibbs
sampler, the posterior distribution of 0 given the data. The posterior
full conditional for 0 given the Z's and the data, is easily seen to be
an up-dated Dirichlet distribution depending only on the Z's. The
posterior full conditional for the Z's given 0 and the data, is easily
seen to be a product of multinosial distributions. Thus, suppose at
the Ith iteration step of the Gibbs sampler, we have the realization
ei W 01, 1 ), with to + '1 8 1. We then up-date the Z

1 2 .W+1 wi 1=1

variables from the multinomial distributions as follows. For each
I+1 1+I

J, J = 1... ,m, we sample Z .. Z i from the multinomial distribu-



I I wher
tion with sample size pt and parameters rj .... where ri ei

iiy , ij
_I+1 -+1/ e' 61 for I = 1, ... J. Similarly, we sample Z +l , Z+l from1=1 J+1' i,+1J'

the multinomial distribution with sample size A and parameters

r 1 1 ' 1 for 1 = J + 1, + 1.
rJ+lj' .... +lj, whreri el / :f+ e1...

I=J+l
Having sampled the Z random variables, we then generate new 6
variables from the Dirichlet distribution as follows. We compute, for
each1, 1= 1,...,m+ 1,

Y1+1 =a+ a+ M IL
1 1 1 L 1 j

andthn amle(e+1 1+1 1+1
and then sample (ee ,..6 , e + 1  from the Dirichlet distributionI M +1

1+1 i+1with parameters (Y 1+ Y+l).1 . .. m+1 j

By running M parallel independent replications of the sampler, after
I I i i ithe ith iteration, we have eis, 9s ..... 1, and Y i.... Y+, for

s = 1,.., M. The posterior distribution of 61 for 1 = 1,... m + 1 can

then be approximated (for sufficiently large 1) by

M- I M +1

F(e~ldata) = H sl1 Beta(Y 1sV I~ Y~

where Beta(ab) denotes the beta density with parameters a and b. A
posterior estimate of the 61 is then given by

e6 = H- 1 _ y
el ~ rw2=I yi

1=1 Is

Other posterior summaries can be computed similarly from the replicated
samples, i and H having been selected to achieve "convergence" to
"smooth" estimates.

4.4 A NUMERICAL EXAMPLE

To illustrate the Gibbs sampler technique, we shall reanalyze the data
set given by Kaplan and Meter (1958). The data consist of deaths
occurring at .8, 3.1, 5.4 and 9.2 months and losses occurring at 1.0,
2.7, 7.0 and 12.1 months. For comparison purposes, we consider the
same prior specifications used by Susarla and Van Ryzin (1976) in their



Bayesian reanalysis of the data. That Is, F (t) = 1 - e - Ot  with * =
.12 and N = 4,8, and 16.

To apply the Gibbs sampler approach, we divide the positive real line

Into the following intervals: (0, .8-], (.8-, .81, (.8, 1], (1, 2.7],

(2.7, 3.1-], (3.1-, 3.1], (3.1, 5.4-1, (5.4-, 5.4], (5.4, 7],

(7, 9.2-], (9.2, 9.2], (9.2, 12.11, and (12.1, =). We label these
intervals by (0, t 1, (t t Y ... ,(t t13], and let e1, ,2 ... and
613, respectively, denote the probabilities assigned to the intervals.

The likelihood of e is proportional to

L(O) = e2 e6e8e11 ( 4 + e5 +.+ 013) x

(5 +...+ 13)(e +...+e )13e13

Let a = N(e - , so that the prior distribution of 0 is

13 i-I
w(e) =C JJ e/

1=1

where C is the normalizing constant.

Note that 02' 6, 8 08 11 and 013 in the likelihood combine simply with

the corresponding e variables in the prior distribution, so that the
parameters 82D 86, e8, 811 and e13 are each up-dated by I in the

posterior distribution. Therefore, we need only introduce three Z
variables for the incomplete data, namely, ZI a (Z4 1, Z5 1 .... Z 13.,1
Z2 = (Z5 2 , Z62 .... ,Z 1 3 , 2 ), and Z3 - (Z 1 0 , 3, Z1 1 ,3, Z1 2 , 3 , Z1 3 ,3). We

then sample Z ,, for j = 1, 2, and 3, from the appropriate multinomial

distribution with sample size 1 and rescaled probabilities.

To estimate the survival function at t j, we accumulate the 01 for 1 >
J. For t between t and t an interpolation formula that connects

the survival function at the two end points according to the prior
shape can be used. Tables 1 and 2 exhibit the Gibbs sampler results
for the survival function evaluated at t with H = 1000 and H - 4000,

both with I = 10. The exact Bayes solutions given by Susarla and Van
Ryzin are also listed for comparison. The tables show that the Gibbs
sampler results for M - 1000 are already very accurate in approxima-



ting the exact Bayes rules. Similar results hold for N = 16. For
further illustration of the Gibbs sampler methodology, see Kuo (1991),
who reanalyses data from Turnbull (1974).

Table 1: Gibbs Approximation to the Bayes Estimates for N = 4

Statistics \ age(t) .8 .8 1 2.7 3.1 3.1

Pt with M = 1000 .970 .886 .879 .819 .805 .702

Pt with H = 4000 .970 .886 .879 .819 .805 .701

Exact Bayes .970 .886 .879 .819 .805 .701

Statistics \ age(t) 5.4 5.4 7 9.2 9.2 12.1

Pt with H = 1000 .632 .529 .491 .437 .305 .253

Pt with M = 4000 .632 .529 .491 .438 .307 .256

Exact Bayes .632 .528 .490 .438 .306 .255

Table 2: Gibbs Approximation to the Bayes Estimates for N = 8

Statistics \ age(t) .8- .8 1 2.7 3.1 3.1

Pt with M = 1000 .954 .892 .881 .792 .773 .698

Pt with H = 4000 .954 .892 .881 .792 .773 .700

Exact Bayes .954 .892 .881 .793 .773 .699

Statistics \ age(t) 5.4 5.4 7 9.2 9.2 12.1

Pt with M = 1000 .600 .527 .474 .405 .316 .249

P t with H = 4000 .602 .529 .474 .405 .318 .250

Exact Bayes .602 .528 .474 .405 .318 .250
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